To solve the given problem, we need to identify the cation \( \text{M}^{2+} \) and its subsequent reactions leading to the metal complex \( \text{C} \). The process and reaction steps can help us determine the spin-only magnetic moment of \( \text{C} \).
**Step 1: Identifying the Cation**
The black precipitate \( \text{A} \) formed when \( \text{M}^{2+} \) reacts with \( \text{H}_2\text{S} \) suggests the formation of metal sulfides common for group-IV cations. In this context, \( \text{PbS} \) is a likely candidate due to its distinct black color. Thus, \( \text{M}^{2+} \) is likely \( \text{Pb}^{2+} \).
**Step 2: Aqua Regia Reaction**
When \( \text{A} \) (assumed as \( \text{PbS} \)) reacts with aqua regia, it forms a product \( \text{B} \), along with \( \text{NOCl, S} \) and \( \text{H}_2\text{O} \). For \( \text{PbS} \), this reaction typically liberates elemental sulfur and forms \( \text{Pb(NO}_3\text{)}_2 \).
**Step 3: Reaction to Form C**
The compound \( \text{B (Pb(NO}_3\text{)}_2) \) then reacts with \( \text{KNO}_2 \) and \( \text{CH}_3\text{COOH} \) to form \( \text{C} \). A common complex formed in this reaction context is \( \text{Pb(CH}_3\text{COO)}_2 \).
**Step 4: Calculating the Spin-Only Magnetic Moment**
The spin-only magnetic moment \( \mu \) is calculated using the formula: \( \mu = \sqrt{n(n+2)} \) BM, where \( n \) is the number of unpaired electrons. Lead (Pb) in the +2 oxidation state has the electronic configuration [Xe]4f145d106s06p0, indicating 0 unpaired electrons.
Thus, \( \mu = \sqrt{0(0+2)} = 0 \) BM.
**Step 5: Verification**
The calculated magnetic moment is \( 0 \) BM, which matches the specified range (0,0). This confirms that the solution is correct and the value is within the expected range.
Therefore, the spin-only magnetic moment value of the metal complex \( \text{C} \) is 0 BM.
From the reactions, the metal complex formed is likely in the 4$^+$ oxidation state, which leads to no unpaired electrons. For such complexes, the spin-only magnetic moment is zero because all electrons are paired. Hence, the magnetic moment is:
\( \mu = 0 { BM}\)
Thus, the correct answer is (0).
In the group analysis of cations, Ba$^{2+}$ & Ca$^{2+}$ are precipitated respectively as
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: