The correct match of the group reagents in List-I for precipitating the metal ion given in List-II from solutions is:
List-I | List-II |
---|---|
(P) Passing H2S in the presence of NH4OH | (1) Cu2+ |
(Q) (NH4)2CO3 in the presence of NH4OH | (2) Al3+ |
(R) NH4OH in the presence of NH4Cl | (3) Mn2+ |
(S) Passing H2S in the presence of dilute HCl | (4) Ba2+ (5) Mg2+ |
P → 5; Q → 3; R → 2; S → 4
(P) H\(_2\)S + NH\(_4\)OH → Precipitates Group IV cations
Group IV cations include Mn\(^{2+}\), Zn\(^{2+}\), Co\(^{2+}\), etc., which precipitate as sulfides in basic medium. \[ \Rightarrow \text{P} \rightarrow \boxed{3} \quad \text{(Mn}^{2+}\text{)} \] (Q) (NH\(_4\))\(_2\)CO\(_3\) + NH\(_4\)OH → Precipitates Group V cations
This group includes alkaline earth metals like Ba\(^{2+}\), Ca\(^{2+}\), Sr\(^{2+}\), which form carbonates. \[ \Rightarrow \text{Q} \rightarrow \boxed{4} \quad \text{(Ba}^{2+}\text{)} \] (R) NH\(_4\)OH + NH\(_4\)Cl → Precipitates Group III cations
Group III cations like Al\(^{3+}\), Cr\(^{3+}\), Fe\(^{3+}\) form hydroxides in weakly basic conditions. \[ \Rightarrow \text{R} \rightarrow \boxed{2} \quad \text{(Al}^{3+}\text{)} \] (S) H\(_2\)S + dilute HCl → Precipitates Group II cations
Group II includes Cu\(^{2+}\), Pb\(^{2+}\), Hg\(^{2+}\) which form sulfides in acidic medium. \[ \Rightarrow \text{S} \rightarrow \boxed{1} \quad \text{(Cu}^{2+}\text{)} \]
Final Answer: \( \boxed{\text{A}} \)
The monomer (X) involved in the synthesis of Nylon 6,6 gives positive carbylamine test. If 10 moles of X are analyzed using Dumas method, the amount (in grams) of nitrogen gas evolved is ____. Use: Atomic mass of N (in amu) = 14
Match List I with List II:
Choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is