Given Reaction:
The reaction is as follows:
\[ \frac{3}{2} O_2 (g) \rightleftharpoons O_3 (g), \quad K_p = 2.47 \times 10^{-29} \]
Calculation of \(\Delta_r G^\circ\):
The formula to calculate the standard Gibbs free energy change \( \Delta_r G^\circ \) is:
\[ \Delta_r G^\circ = -RT \ln K_p \]
Substitute the known values:
\[ \Delta_r G^\circ = - (8.314 \times 10^{-3} \, \text{kJ/mol/K}) \times 298 \, \text{K} \times \ln(2.47 \times 10^{29}) \]
Now calculate the value of \( \ln(2.47 \times 10^{29}) \):
\[ \ln(2.47 \times 10^{29}) = -65.87 \]
Substitute this back into the equation:
\[ \Delta_r G^\circ = - (8.314 \times 10^{-3} \times 298 \times -65.87) = 163.19 \, \text{kJ} \]
Conclusion:
The standard Gibbs free energy change is \( \Delta_r G^\circ = 163.19 \, \text{kJ} \).
\[ \Delta G^\circ = -RT \ln K_p \]
\[ \Delta G^\circ = -8.314 \times 10^{-3} \times 298 \times \ln(2.47 \times 10^{-29}) \]
\[ = -8.314 \times 10^{-3} \times 298 \times (-65.87) \]
\[ = 163.19 \, \text{kJ} \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: