Given Reaction:
The reaction is as follows:
\[ \frac{3}{2} O_2 (g) \rightleftharpoons O_3 (g), \quad K_p = 2.47 \times 10^{-29} \]
Calculation of \(\Delta_r G^\circ\):
The formula to calculate the standard Gibbs free energy change \( \Delta_r G^\circ \) is:
\[ \Delta_r G^\circ = -RT \ln K_p \]
Substitute the known values:
\[ \Delta_r G^\circ = - (8.314 \times 10^{-3} \, \text{kJ/mol/K}) \times 298 \, \text{K} \times \ln(2.47 \times 10^{29}) \]
Now calculate the value of \( \ln(2.47 \times 10^{29}) \):
\[ \ln(2.47 \times 10^{29}) = -65.87 \]
Substitute this back into the equation:
\[ \Delta_r G^\circ = - (8.314 \times 10^{-3} \times 298 \times -65.87) = 163.19 \, \text{kJ} \]
Conclusion:
The standard Gibbs free energy change is \( \Delta_r G^\circ = 163.19 \, \text{kJ} \).
\[ \Delta G^\circ = -RT \ln K_p \]
\[ \Delta G^\circ = -8.314 \times 10^{-3} \times 298 \times \ln(2.47 \times 10^{-29}) \]
\[ = -8.314 \times 10^{-3} \times 298 \times (-65.87) \]
\[ = 163.19 \, \text{kJ} \]


Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
