Question:

Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $ 
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $ 
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $ 
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $

Show Hint

For electrochemical cells, the Nernst equation is crucial for relating cell potential to concentration changes. Remember that at equilibrium, the cell potential becomes zero, and you can use this to solve for unknown values like pH or concentration.
Updated On: Apr 12, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 10 - 11

Solution and Explanation

Given the cell: \[ \text{Pt}|\text{H}_2(1\,\text{atm})|\text{H}^+(1\,\text{M})||\text{Cr}_2\text{O}_7^{2-},\text{Cr}^{3+},\text{H}^+|\text{Pt} \] with \( E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33\,\text{V} \) and equilibrium condition: \[ \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}]} = 10^{-7} \]
Steps: 1.
Half-reactions: \begin{itemize} \item Anode: \(\text{H}_2 \rightarrow 2\text{H}^+ + 2e^-\) \quad (\(E^\circ = 0.00\,\text{V}\)) \item Cathode: \(\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}\) \end{itemize} 2.
Nernst equations: \begin{itemize} \item Anode: \(E_{\text{anode}} = 0.00 - \frac{0.0591}{2}\log(1) = 0.00\,\text{V}\) \item Cathode: \[ E_{\text{cathode}} = 1.33 - \frac{0.0591}{6}\log\left(\frac{10^{-7}}{[\text{H}^+]^{14}}\right) \] \[ = 1.33 + 0.069 + 0.138\log[\text{H}^+] \] \[ = 1.399 - 0.138\,\text{pH} \] \end{itemize} 3.
Cell potential (\(E_{\text{cell}} = 0\)): \[ 0 = (1.399 - 0.138\,\text{pH}) - 0 \] \[ \text{pH} = \frac{1.399}{0.138} \approx 10.14 \] \subsection{Answer:} The required pH is \(\boxed{10.14}\).
Was this answer helpful?
0
0