Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
Standard electrode potentials for a few half-cells are mentioned below:
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]