The equation of the ellipse is:
\[ \frac{x^2}{9} + \frac{y^2}{4} = 1 \quad (1) \]
Given \( q = 2 \), the area of \( \triangle ORT \) is:
\[ \text{Area} = \frac{1}{2} \times (OR) \times (OK) = \frac{3}{2}. \] \[ \Rightarrow \frac{1}{2} \times 3 \times k = \frac{3}{2} \] \[ \Rightarrow k = 1. \]
Let \( T(h, -1) \) lie on the ellipse (1):
\[ \frac{h^2}{9} + \frac{1}{4} = 1 \] \[ \Rightarrow \frac{h^2}{9} = \frac{3}{4} \] \[ \Rightarrow h^2 = \frac{9}{4} \] \[ \Rightarrow h = \pm \frac{3\sqrt{3}}{2}. \]
The equation of the tangent at \( T \left( \frac{3\sqrt{3}}{2}, -1 \right) \) is:
\[ \frac{3\sqrt{3}}{2} \cdot \frac{x}{9} + \frac{-y}{4} = 1 \] \[ \Rightarrow \frac{\sqrt{3}}{6} x - \frac{y}{4} = 1. \]
This line passes through \( S(p, 2) \):
\[ \frac{\sqrt{3}}{6} p - \frac{2}{4} = 1 \] \[ \Rightarrow \frac{\sqrt{3}}{6} p = \frac{3}{2} \] \[ \Rightarrow p = \frac{9\sqrt{3}}{2} = 3\sqrt{3}. \]
Thus, \( p = 3\sqrt{3} \) and \( q = 2 \).
Final Answer:
\[ q = 2, \quad p = 3\sqrt{3} \]
If a tangent to the hyperbola \( x^2 - \frac{y^2}{3} = 1 \) is also a tangent to the parabola \( y^2 = 8x \), then the equation of such tangent with the positive slope is:
If a circle of radius 4 cm passes through the foci of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and is concentric with the hyperbola, then the eccentricity of the conjugate hyperbola of that hyperbola is: