Question:

Consider the ellipse x29+y24=1\frac{x^2}{9}+\frac{y^2}{4}=1. Let S (p, q) be a point in the first quadrant such that p29+q24>1\frac{p^2}{9}+\frac{q^2}{4}>1. Two tangents are drawn from S to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point T in the fourth quadrant. Let R be the vertex of the ellipse with positive x-coordinate and Obe the center of the ellipse. If the area of the triangle △ORT is 32\frac{3}{2} , then which of the following options is correct ?

Updated On: Mar 7, 2025
  • q=2,p=33q=2,p=3\sqrt3
  • q=2,p=43q=2,p=4\sqrt3
  • 0.5m,5kg ms0.5m,-5kg \ \frac{m}{s}
  • 1m,5kg ms-1m,5kg \ \frac{m}{s}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The equation of the ellipse is: 

x29+y24=1(1) \frac{x^2}{9} + \frac{y^2}{4} = 1 \quad (1)

Given q=2 q = 2 , the area of ORT \triangle ORT is:

Area=12×(OR)×(OK)=32. \text{Area} = \frac{1}{2} \times (OR) \times (OK) = \frac{3}{2}. 12×3×k=32 \Rightarrow \frac{1}{2} \times 3 \times k = \frac{3}{2} k=1. \Rightarrow k = 1.

Let T(h,1) T(h, -1) lie on the ellipse (1):

h29+14=1 \frac{h^2}{9} + \frac{1}{4} = 1 h29=34 \Rightarrow \frac{h^2}{9} = \frac{3}{4} h2=94 \Rightarrow h^2 = \frac{9}{4} h=±332. \Rightarrow h = \pm \frac{3\sqrt{3}}{2}.

The equation of the tangent at T(332,1) T \left( \frac{3\sqrt{3}}{2}, -1 \right) is:

332x9+y4=1 \frac{3\sqrt{3}}{2} \cdot \frac{x}{9} + \frac{-y}{4} = 1 36xy4=1. \Rightarrow \frac{\sqrt{3}}{6} x - \frac{y}{4} = 1.

This line passes through S(p,2) S(p, 2) :

36p24=1 \frac{\sqrt{3}}{6} p - \frac{2}{4} = 1 36p=32 \Rightarrow \frac{\sqrt{3}}{6} p = \frac{3}{2} p=932=33. \Rightarrow p = \frac{9\sqrt{3}}{2} = 3\sqrt{3}.

Thus, p=33 p = 3\sqrt{3} and q=2 q = 2 .

Final Answer:

q=2,p=33 q = 2, \quad p = 3\sqrt{3}

Was this answer helpful?
2
2

Top Questions on Conic sections

View More Questions

Questions Asked in JEE Advanced exam

View More Questions