Consider $M$ with $r=\frac{1025}{513}$. Let $k$ be the number of all those circles $C_{n}$ that are inside $M$. Let $1$ be the maximum possible number of circles among these $k$ circles such that no two circles intersect Then
Step 1: Understand the given expression for radius $r$
We are given the radius $r$ of the circle $M$ as:
$$ r = \frac{1025}{513}. $$
We are tasked with finding the number of all circles $C_n$ that are inside $M$ and determining a specific value based on the given conditions.
Step 2: Consider the number of circles $k$ inside $M$
Let $k$ be the number of circles $C_n$ inside $M$ such that no two circles intersect. We are also given that the maximum possible number of circles, among these $k$ circles, such that no two circles intersect is 1.
Step 3: Analyze the general form of the radius and the sum of areas
We are given that:
$$ a_n = \frac{1}{2^{n-1}} $$
and
$$ S_n = 2 \left( 1 - \frac{1}{2^n} \right). $$
These represent the areas of the circles $C_n$ inside $M$. To ensure the circles fit inside $M$, the sum of areas for circles $C_{n-1}$ and $C_n$ should be less than the area of $M$.
Step 4: Apply the condition for non-intersecting circles
We are given the condition:
$$ S_{n-1} + a_n < \frac{1025}{513}. $$
Substituting for $S_n$ and $a_n$, we get:
$$ 2 \left( 1 - \frac{1}{2^n} \right) < \frac{1025}{513}. $$
Simplifying further, we get:
$$ 1 - \frac{1}{2^n} < \frac{1025}{1026}, $$
which simplifies to:
$$ \frac{1}{2^n} > \frac{1}{1026}. $$
Thus, we have:
$$ 2^n < 1026. $$
Taking the logarithm, we get:
$$ n ≤ 10. $$
Thus, the maximum number of circles $n$ is 10.
Step 5: Maximum number of non-intersecting circles
It’s evident that alternate circles, namely $C_1, C_3, C_5, C_7, C_9$, do not intersect each other, and similarly, $C_2, C_4, C_6, C_8, C_{10}$ do not intersect each other. Therefore, a maximum of 5 sets of circles do not intersect each other.
Thus, the value of $l = 5$.
Step 6: Calculate the final result
We are asked to find the value of $3K + 2l$. Substituting the known values, we get:
$$ 3K + 2l = 3 × 10 + 2 × 5 = 30 + 10 = 40. $$
Step 7: Conclusion
Thus, the correct answer is Option (D), which is $\boxed{40}$.
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?