We are given an nMOSFET operating with:
\[
\mu_n C_{OX} = 1\ \text{mA/V}^2,\quad W = 100\ \mu\text{m},\quad L = 10\ \mu\text{m}.
\]
The process transconductance parameter is:
\[
k_n = \mu_n C_{OX}\left(\frac{W}{L}\right)
= 1\ \text{mA/V}^2 \times \frac{100}{10}
= 10\ \text{mA/V}^2.
\]
Step 1: Determine maximum $V_{GS$.}
\[
V_{GS}(t) = 2 - \sin(2t).
\]
Since $\sin(2t)$ ranges from $-1$ to $+1$:
\[
V_{GS,\max} = 2 - (-1) = 3\ \text{V}.
\]
Step 2: Check region of operation.
Threshold voltage $V_T = 1$ V.
At maximum $V_{GS} = 3$ V,
\[
V_{GS} - V_T = 2\ \text{V}.
\]
Given $V_{DS} = 1$ V<$(V_{GS} - V_T) = 2$ V,
the MOSFET operates in the \textit{linear (triode) region}.
Step 3: Drain current in linear region.
\[
I_D = k_n \left[ (V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right].
\]
Substitute maximum values:
\[
I_{D,\max} = 10\ \text{mA/V}^2 \left[ (2)(1) - \frac{1}{2} \right]
= 10\ \text{mA/V}^2 \left[ 2 - 0.5 \right]
= 10 \times 1.5.
\]
\[
I_{D,\max} = 15\ \text{mA}.
\]
Thus, the maximum drain current is 15 mA.
Final Answer: 15 mA