
To solve for the integer \( n \) in the given problem, we analyze the reflection coefficient \( R \) as the energy \( E \) becomes much greater than the potential \( U_0 \).
In region 2 (\( x \geq 0 \)), the momentum \( p_2 \) of the electron is given by:
\( p_2 = \sqrt{2m(E-U_0)} \)
The reflection coefficient \( R \) is expressed as:
\[ R = \left(\frac{p_1 - p_2}{p_1 + p_2}\right)^2 \]
Substituting \( p_1 = \sqrt{2mE} \) and \( p_2 = \sqrt{2m(E-U_0)} \), we have:
\[ R = \left(\frac{\sqrt{2mE} - \sqrt{2m(E-U_0)}}{\sqrt{2mE} + \sqrt{2m(E-U_0)}}\right)^2 \]
Simplifying the terms:
\[ R = \left(\frac{\sqrt{E} - \sqrt{E-U_0}}{\sqrt{E} + \sqrt{E-U_0}}\right)^2 \]
For \( E \gg U_0 \), the approximation is:
\( \sqrt{E-U_0} \approx \sqrt{E}\left(1 - \frac{U_0}{2E}\right) \)
Substitute back:
\[ R \approx \left(\frac{\sqrt{E} - \sqrt{E}\left(1 - \frac{U_0}{2E}\right)}{\sqrt{E} + \sqrt{E}\left(1 - \frac{U_0}{2E}\right)}\right)^2 = \left(\frac{U_0}{4E}\right)^2 \]
As \( E \to \infty \), \( R \to 0 \), confirming that the integer \( n \) is determined by how rapidly \( R \) approaches 0, characterized by the factor \( \left(\frac{U_0}{4E}\right)^2 \).
Comparing the exponents, \( n = 16 \).

