Question:

Consider an+1 = 1/1+1/an for n = 1,2,.......2008,2009. where a1 = 1. Find the value of a1a2 + a2a3 + a3a4+ .......+ a2008a2009.

Updated On: Aug 21, 2025
  • 2009/1000
  • 2009/2008
  • 2008/2009
  • 6000/2009
  • 2008/6000
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The recurrence is: \[ a_{n+1} = \frac{a_n}{a_n + 1}. \] Hence, \[ a_n a_{n+1} = \frac{a_n^2}{a_n + 1}. \]

Notice that: \[ a_n - a_{n+1} = \frac{a_n}{a_n+1} \cdot \frac{a_n}{1} = \frac{a_n^2}{a_n+1} = a_n a_{n+1}. \] Therefore, \[ a_n a_{n+1} = a_n - a_{n+1}. \] 

Thus, the sum telescopes: \[ S = (a_1 - a_2) + (a_2 - a_3) + \cdots + (a_{2008} - a_{2009}). \] Simplifying: \[ S = a_1 - a_{2009}. \]

Since \(a_1 = 1\), \[ S = 1 - a_{2009}. \]

To evaluate \(a_{2009}\), observe the pattern by defining \(b_n = \frac{1}{a_n}\). Then, \[ a_{n+1} = \frac{a_n}{a_n+1} \quad \Rightarrow \quad \frac{1}{a_{n+1}} = \frac{a_n+1}{a_n} = 1 + \frac{1}{a_n}. \] So, \[ b_{n+1} = b_n + 1, \quad \text{with } b_1 = \frac{1}{a_1} = 1. \] Hence, \[ b_n = n \quad \Rightarrow \quad a_n = \frac{1}{n}. \]

Therefore, \[ a_{2009} = \frac{1}{2009}. \] Substituting back: \[ S = 1 - \frac{1}{2009} = \frac{2008}{2009}. \]

Final Answer:
\[ \boxed{\tfrac{2008}{2009}} \]

Options Check:

OptionValueStatus
\(\tfrac{2009}{1000}\)≈ 2.009Incorrect
\(\tfrac{2009}{2008}\)≈ 1.0005Incorrect
\(\tfrac{2008}{2009}\)≈ 0.9995Correct
\(\tfrac{6000}{2009}\)≈ 2.987Incorrect
\(\tfrac{2008}{6000}\)≈ 0.334Incorrect
Was this answer helpful?
1
0