The recurrence is: \[ a_{n+1} = \frac{a_n}{a_n + 1}. \] Hence, \[ a_n a_{n+1} = \frac{a_n^2}{a_n + 1}. \]
Notice that: \[ a_n - a_{n+1} = \frac{a_n}{a_n+1} \cdot \frac{a_n}{1} = \frac{a_n^2}{a_n+1} = a_n a_{n+1}. \] Therefore, \[ a_n a_{n+1} = a_n - a_{n+1}. \]
Thus, the sum telescopes: \[ S = (a_1 - a_2) + (a_2 - a_3) + \cdots + (a_{2008} - a_{2009}). \] Simplifying: \[ S = a_1 - a_{2009}. \]
Since \(a_1 = 1\), \[ S = 1 - a_{2009}. \]
To evaluate \(a_{2009}\), observe the pattern by defining \(b_n = \frac{1}{a_n}\). Then, \[ a_{n+1} = \frac{a_n}{a_n+1} \quad \Rightarrow \quad \frac{1}{a_{n+1}} = \frac{a_n+1}{a_n} = 1 + \frac{1}{a_n}. \] So, \[ b_{n+1} = b_n + 1, \quad \text{with } b_1 = \frac{1}{a_1} = 1. \] Hence, \[ b_n = n \quad \Rightarrow \quad a_n = \frac{1}{n}. \]
Therefore, \[ a_{2009} = \frac{1}{2009}. \] Substituting back: \[ S = 1 - \frac{1}{2009} = \frac{2008}{2009}. \]
Final Answer:
\[ \boxed{\tfrac{2008}{2009}} \]
Option | Value | Status |
---|---|---|
\(\tfrac{2009}{1000}\) | ≈ 2.009 | Incorrect |
\(\tfrac{2009}{2008}\) | ≈ 1.0005 | Incorrect |
\(\tfrac{2008}{2009}\) | ≈ 0.9995 | Correct |
\(\tfrac{6000}{2009}\) | ≈ 2.987 | Incorrect |
\(\tfrac{2008}{6000}\) | ≈ 0.334 | Incorrect |
Match the following authors with their respective works.
Authors | Books |
---|---|
1. Andy Weir | A. Dune |
2. Cixin Liu | B. The Time Machine |
3. Stephen Hawking | C. The Brief History of Time |
4. HG Wells | D. The Martian |
5. Frank Herbert | E. The Three Body Problem |