We are given the Fourier transform of a continuous-time signal \( f(t) \), and we need to determine which of the following statements is always true. Step 1: Bound on \( |F(\omega)| \)
We use the triangle inequality and absolute value properties of integrals. Specifically: \[ |F(\omega)| = \left| \int_{-\infty}^{\infty} f(t) \exp(-j \omega t) \, dt \right| \leq \int_{-\infty}^{\infty} |f(t)| \, dt. \] This follows from the fact that the magnitude of the complex exponential \( \exp(-j \omega t) \) is always 1, i.e., \( |\exp(-j \omega t)| = 1 \). Therefore, we can bound the magnitude of \( F(\omega) \) by the integral of the absolute value of \( f(t) \). Thus, the inequality \( |F(\omega)| \leq \int_{-\infty}^{\infty} |f(t)| \, dt \) is always true, corresponding to Option (A).
Step 2: Examine Other Options
Option (B): \( |F(\omega)|>\int_{-\infty}^{\infty} |f(t)| \, dt \) This is incorrect. From the triangle inequality, we know that \( |F(\omega)| \) can never exceed \( \int_{-\infty}^{\infty} |f(t)| \, dt \), so this inequality cannot hold. Option (C): \( |F(\omega)| \leq \int_{-\infty}^{\infty} f(t) \, dt \)
This is also incorrect. The Fourier transform of a signal depends on the entire signal \( f(t) \), but the absolute value of \( f(t) \) is used in the correct bound, not just \( f(t) \) itself. Option (D): \( |F(\omega)| \geq \int_{-\infty}^{\infty} f(t) \, dt \)
This is incorrect. There is no such general inequality between \( |F(\omega)| \) and \( \int_{-\infty}^{\infty} f(t) \, dt \). The magnitude of the Fourier transform is not necessarily greater than or equal to the integral of \( f(t) \). Thus, the correct answer is (A).
Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated.
The voltage (in Volts) at node \( X \) is _________.
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).
The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by \[ V_I = 10 \sin(100\pi t), \quad {where time} \, t \, {is in seconds.} \] The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is (answer in ms).