Question:

The Laplace transform of a signal X(t)X(t) is X(s)=4s+1s2+6s+3. X(s) = \frac{4s + 1}{s^2 + 6s + 3}. The initial value X(0)X(0) is:

Show Hint

For the Laplace transform X(s) X(s) , the Initial Value Theorem states: X(0)=limssX(s). X(0) = \lim\limits_{s \to \infty} s X(s).
Updated On: Apr 10, 2025
  • 0 0
  • 4 4
  • 1/6 1/6
  • 4/3 4/3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use the initial value theorem. limt0X(t)=limssX(s). \lim\limits_{t \to 0} X(t) = \lim\limits_{s \to \infty} s X(s). Step 2: Compute limit. limss4s+1s2+6s+3. \lim\limits_{s \to \infty} s \cdot \frac{4s + 1}{s^2 + 6s + 3}. Dividing numerator and denominator by s s : lims4s2+ss2+6s+3=lims4+1s1+6s+3s2. \lim\limits_{s \to \infty} \frac{4s^2 + s}{s^2 + 6s + 3} = \lim\limits_{s \to \infty} \frac{4 + \frac{1}{s}}{1 + \frac{6}{s} + \frac{3}{s^2}}. Step 3: Evaluating the limit. lims41=4/3. \lim\limits_{s \to \infty} \frac{4}{1} = 4/3. Step 4: Selecting the correct option. Since X(0)=4/3 X(0) = 4/3 , the correct answer is (D).
Was this answer helpful?
0
0

Top Questions on Laplace, Fourier and z-transforms

View More Questions