Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________(round off to the nearest integer).

The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is _________ (round off to one decimal place).

In an experiment to measure the active power drawn by a single-phase RL Load connected to an AC source through a \(2\,\Omega\) resistor, three voltmeters are connected as shown in the figure below. The voltmeter readings are as follows: \( V_{{Source}} = 200\,{V}, \quad V_R = 9\,{V}, \quad V_{{Load}} = 199\,{V}. \) Assuming perfect resistors and ideal voltmeters, the Load-active power measured in this experiment, in W, is __________ (round off to one decimal place).

In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
