Consider ordinary differential equations given by  
\[ 
\frac{dx_1(t)}{dt} = 2x_2(t), \quad \frac{dx_2(t)}{dt} = r(t) 
\]  
with initial conditions \( x_1(0) = 1 \) and \( x_2(0) = 0 \).  
If  
\[ 
r(t) = \begin{cases}  
1, & t \geq 0 \\ 
0, & t < 0  
\end{cases} 
\]  
then at \( t = 1 \), \( x_1(t) = \underline{2cm} \) (round off to the nearest integer).