Compare boiling point of given solutions:
(i) \( 10^{-4} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(iii) \( 10^{-2} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(iii) \( 10^{-2} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iii) \( 10^{-2} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(iii) \( 10^{-2} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: