Compare boiling point of given solutions:
(i) \( 10^{-4} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(iii) \( 10^{-2} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(iii) \( 10^{-2} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iii) \( 10^{-2} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
(iii) \( 10^{-2} \, \text{M NaCl} \)>(ii) \( 10^{-3} \, \text{M NaCl} \)>(i) \( 10^{-4} \, \text{M NaCl} \)>(iv) \( 10^{-4} \, \text{M urea} \)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.