1+α2+βγ=0
1-α2+βγ=0
1-α2-βγ=0
1+α2-βγ=0
A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
A2=A.A =A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
= \(\begin{bmatrix} α^2+\beta\gamma & \alphaβ-\alpha\beta \\ \alpha\gamma-\alpha\gamma & \beta\gamma+\alpha^2 \end{bmatrix}\)
=\(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)
Now A2=I ⇒ \(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
On comparing the corresponding elements, we have:
α2+βγ=1
⇒α2+βγ-1=0
⇒1-α2-βγ=0
Three students, Neha, Rani, and Sam go to a market to purchase stationery items. Neha buys 4 pens, 3 notepads, and 2 erasers and pays ₹ 60. Rani buys 2 pens, 4 notepads, and 6 erasers for ₹ 90. Sam pays ₹ 70 for 6 pens, 2 notepads, and 3 erasers.
Based upon the above information, answer the following questions:
(i) Form the equations required to solve the problem of finding the price of each item, and express it in the matrix form \( A \mathbf{X} = B \).
Flowering plants with hermaphrodite flowers have developed many reproductive strategies to ensure cross-pollination. Study the given outbreeding devices adopted by certain flowering plants and answer the questions that follow.
Note : All plants belong to the same species. No pollen tube growth/inhibition of pollen germination on stigma. Pollen germination on stigma.