1+α2+βγ=0
1-α2+βγ=0
1-α2-βγ=0
1+α2-βγ=0
A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
A2=A.A =A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
= \(\begin{bmatrix} α^2+\beta\gamma & \alphaβ-\alpha\beta \\ \alpha\gamma-\alpha\gamma & \beta\gamma+\alpha^2 \end{bmatrix}\)
=\(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)
Now A2=I ⇒ \(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
On comparing the corresponding elements, we have:
α2+βγ=1
⇒α2+βγ-1=0
⇒1-α2-βγ=0
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)