1+α2+βγ=0
1-α2+βγ=0
1-α2-βγ=0
1+α2-βγ=0
A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
A2=A.A =A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
= \(\begin{bmatrix} α^2+\beta\gamma & \alphaβ-\alpha\beta \\ \alpha\gamma-\alpha\gamma & \beta\gamma+\alpha^2 \end{bmatrix}\)
=\(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)
Now A2=I ⇒ \(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
On comparing the corresponding elements, we have:
α2+βγ=1
⇒α2+βγ-1=0
⇒1-α2-βγ=0
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: