Question:

Choose the correct answer in the following questions: If \(\begin{bmatrix} α & β  \\ \gamma & -\alpha \end{bmatrix}\) is such that A2=I then  

Updated On: Oct 13, 2023
  • 1+α2+βγ=0

  • 1-α2+βγ=0

  • 1-α2-βγ=0

  • 1+α2-βγ=0

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

A=\(\begin{bmatrix} α & β  \\ \gamma & -\alpha \end{bmatrix}\)

A2=A.A =A=\(\begin{bmatrix} α & β  \\ \gamma & -\alpha \end{bmatrix}\)A=\(\begin{bmatrix} α & β  \\ \gamma & -\alpha \end{bmatrix}\)

\(\begin{bmatrix} α^2+\beta\gamma & \alphaβ-\alpha\beta  \\ \alpha\gamma-\alpha\gamma & \beta\gamma+\alpha^2 \end{bmatrix}\) 

=\(\begin{bmatrix} α^2+\beta\gamma & 0  \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)

Now A2=I ⇒ \(\begin{bmatrix} α^2+\beta\gamma & 0  \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)\(\begin{bmatrix} 1 & 0  \\ 0 & 1 \end{bmatrix}\)

On comparing the corresponding elements, we have: 

α2+βγ=1 

⇒α2+βγ-1=0 

⇒1-α2-βγ=0 

Was this answer helpful?
0
0