1+α2+βγ=0
1-α2+βγ=0
1-α2-βγ=0
1+α2-βγ=0
A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
A2=A.A =A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)A=\(\begin{bmatrix} α & β \\ \gamma & -\alpha \end{bmatrix}\)
= \(\begin{bmatrix} α^2+\beta\gamma & \alphaβ-\alpha\beta \\ \alpha\gamma-\alpha\gamma & \beta\gamma+\alpha^2 \end{bmatrix}\)
=\(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)
Now A2=I ⇒ \(\begin{bmatrix} α^2+\beta\gamma & 0 \\ 0& \beta\gamma+\alpha^2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
On comparing the corresponding elements, we have:
α2+βγ=1
⇒α2+βγ-1=0
⇒1-α2-βγ=0
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?