Calculate the mean deviation about median age for the age distribution of 100 persons given below
Age (in years) | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.
The table is formed as follows.
Age | Number \(f_i\) | Cumulative frequency (c.f.) | Mid point \(x_i\) | \(|x_i-Med.|\) | \(f_i|x_i-Med.|\)| |
15.5-20.5 | 5 | 5 | 18 | 20 | 100 |
20.5-25.5 | 6 | 11 | 23 | 15 | 90 |
25.5-30.5 | 12 | 23 | 28 | 10 | 120 |
30.5-35.5 | 14 | 37 | 33 | 5 | 70 |
35.5-40.5 | 26 | 63 | 38 | 0 | 0 |
40.5-45.5 | 12 | 75 | 43 | 5 | 60 |
45.5-50.5 | 16 | 91 | 48 | 10 | 160 |
50.5-55.5 | 9 | 100 | 53 | 15 | 135 |
100 | 735 |
The class interval containing the \((\frac{N}{2})^{th}\) or 50th item is 35.5 – 40.5.
Therefore, 35.5 – 40.5.is the median class.
It is known that,
Median= \(I+\frac{\frac{N}{2}-c}{f}h\)
Here, l = 35.5, C = 37, f = 26, h = 5, and N = 100
\(Median=35.5+\frac{50-37}{26}×5=35.5+\frac{13×5}{26}=35.5+2.5=38\)
Thus, mean deviation about the median is given by,
\(M.D.(\bar{x})=\frac{1}{N}\sum_{i=1}^{8}f_i|x_i-M|=\frac{1}{100}×735.1=7.35\)
Find the mean deviation of the following data:
Give reasons for the following.
(i) King Tut’s body has been subjected to repeated scrutiny.
(ii) Howard Carter’s investigation was resented.
(iii) Carter had to chisel away the solidified resins to raise the king’s remains.
(iv) Tut’s body was buried along with gilded treasures.
(v) The boy king changed his name from Tutankhaten to Tutankhamun.
Answer the following :
(a) The casing of a rocket in flight burns up due to friction. At whose expense is the heat energy required for burning obtained? The rocket or the atmosphere?
(b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet’s velocity in general. Yet the work done by the gravitational force over every complete orbit of the comet is zero. Why ?
(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy gradually due to dissipation against atmospheric resistance, however small. Why then does its speed increase progressively as it comes closer and closer to the earth ?
(d) In Fig. 5.13(i) the man walks 2 m carrying a mass of 15 kg on his hands. In Fig. 5.13(ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater ?
A statistical measure that is used to calculate the average deviation from the mean value of the given data set is called the mean deviation.
The mean deviation for the given data set is calculated as:
Mean Deviation = [Σ |X – µ|]/N
Where,
Grouping of data is very much possible in two ways: