Mass of our galaxy Milky Way, M = 2.5 × 1011
solar mass Solar mass = Mass of Sun = 2.0 × 1036 kg
Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 = 5 ×1041 kg
Diameter of Milky Way, d = 105 ly
7 Radius of Milky Way, r = 5 × 104 ly
1 ly = 9.46 × 1015 m
∴ r = 5 × 104 × 9.46 × 1015
= 4.73 ×1020 m
Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:
\(T = (\frac{4π^2 \,r^3 }{ GM})^{\frac{1}{2}}\)
\(= (\frac{4 × (3.14)^2 × (4.73)^3 × 10^{60} }{6.67 ×10 ^{-11 }× 5 × 10^{41}}) ^{\frac{1}{2}} =\frac{ 39.48 × 105.82 ×10^{30} }{33.35 }) ^{\frac{1}{2}}\)
\(=(125.27 × 10^{30} )^{\frac{1}{2}} = 1.12 × 10^{16}\) s
1 year = 365 x 324 x 60x60 s
\(1s = \frac{1}{365 ×324 × 60×60}\) year
\(∴ 1.12 × 10^{16}s = \frac{1.12 × 10^{16} }{365 × 324 × 60×60}\)
\(= 3.55× 10 ^8 \) years
Figure 8.9 shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?

Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V. If the collision is elastic, which of the following (Fig. 5.14) is a possible result after collision ?

Gravitational force is a central force that depends only on the position of the test mass from the source mass and always acts along the line joining the centers of the two masses.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
By combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2 [f(r)is a variable, Non-contact, and conservative force]