Mass of our galaxy Milky Way, M = 2.5 × 1011
solar mass Solar mass = Mass of Sun = 2.0 × 1036 kg
Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 = 5 ×1041 kg
Diameter of Milky Way, d = 105 ly
7 Radius of Milky Way, r = 5 × 104 ly
1 ly = 9.46 × 1015 m
∴ r = 5 × 104 × 9.46 × 1015
= 4.73 ×1020 m
Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:
\(T = (\frac{4π^2 \,r^3 }{ GM})^{\frac{1}{2}}\)
\(= (\frac{4 × (3.14)^2 × (4.73)^3 × 10^{60} }{6.67 ×10 ^{-11 }× 5 × 10^{41}}) ^{\frac{1}{2}} =\frac{ 39.48 × 105.82 ×10^{30} }{33.35 }) ^{\frac{1}{2}}\)
\(=(125.27 × 10^{30} )^{\frac{1}{2}} = 1.12 × 10^{16}\) s
1 year = 365 x 324 x 60x60 s
\(1s = \frac{1}{365 ×324 × 60×60}\) year
\(∴ 1.12 × 10^{16}s = \frac{1.12 × 10^{16} }{365 × 324 × 60×60}\)
\(= 3.55× 10 ^8 \) years
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?
Gravitational force is a central force that depends only on the position of the test mass from the source mass and always acts along the line joining the centers of the two masses.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
By combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2 [f(r)is a variable, Non-contact, and conservative force]