The power dissipated in a resistive circuit is given by:
\[ P = I^2R. \]Let the initial power be \( P_{\text{initial}} = I_{\text{initial}}^2 R \).
If the current drops by 20%, the new current \( I_{\text{final}} \) is:
\[ I_{\text{final}} = 0.8 I_{\text{initial}}. \]The new power \( P_{\text{final}} \) is:
\[ P_{\text{final}} = I_{\text{final}}^2 R = (0.8 I_{\text{initial}})^2 R = 0.64 I_{\text{initial}}^2 R. \]The percentage change in power is:
\[ \frac{P_{\text{initial}} - P_{\text{final}}}{P_{\text{initial}}} \times 100 = (1 - 0.64) \times 100 = 36\%. \]Thus, the illumination decreases by:
\[ 36\%. \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: