The power dissipated in a resistive circuit is given by:
\[ P = I^2R. \]Let the initial power be \( P_{\text{initial}} = I_{\text{initial}}^2 R \).
If the current drops by 20%, the new current \( I_{\text{final}} \) is:
\[ I_{\text{final}} = 0.8 I_{\text{initial}}. \]The new power \( P_{\text{final}} \) is:
\[ P_{\text{final}} = I_{\text{final}}^2 R = (0.8 I_{\text{initial}})^2 R = 0.64 I_{\text{initial}}^2 R. \]The percentage change in power is:
\[ \frac{P_{\text{initial}} - P_{\text{final}}}{P_{\text{initial}}} \times 100 = (1 - 0.64) \times 100 = 36\%. \]Thus, the illumination decreases by:
\[ 36\%. \]Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: