(i) △=\(\begin{vmatrix} a-b-c & 2a & 2a\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying R1 → R1 + R2 + R3, we have:
△=I\(\begin{vmatrix} a+b+c & a+b+c & a+b+c\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
=(a+b+c)\(\begin{vmatrix} 1 & 1 & 1\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying C2 → C2 − C1, C3 → C3 − C1, we have:
△=(a+b+c)\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -a+b+c & 0 \\ 2c&0&-(a+b+c)\end{vmatrix}\)
=(a+b+c)3\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -1 & 0 \\ 2c&0&-1\end{vmatrix}\)
Expanding along C3, we have:
△=(a+b+c)3(-1)(-1)=(a+b+c)3
Hence, the given result is proved.
(ii) △=\(\begin{vmatrix} x+y+2z & x & y\\ z & y+z+2x & y\\ z &x&z+x+2y \end{vmatrix}\)
Applying C1 → C1 + C2 + C3, we have:
△=\(\begin{vmatrix} 2(x+y+z) & x & y\\ 2(x+y+z) & y+z+2x & y\\ 2(x+y+z) &x&z+x+2y \end{vmatrix}\)
=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 1 & y+z+2x & y\\ 1 &x&z+x+2y \end{vmatrix}\)
Applying R2 → R2 − R1 and R3 → R3 − R1, we have:
△=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 0 &x+y+z & y\\ 0 &0&x+y+z \end{vmatrix}\)
△=2(x+y+z)3\(\begin{vmatrix} 1 & x & y\\ 0 &1 & 0\\ 0 &0&1\end{vmatrix}\)
Expanding along R3, we have:
△=2(x+y+z)3(1)(1-0)=2(x+y+z)3
Hence, the given result is proved.
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).

Read More: Properties of Determinants