(i) △=\(\begin{vmatrix} a-b-c & 2a & 2a\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying R1 → R1 + R2 + R3, we have:
△=I\(\begin{vmatrix} a+b+c & a+b+c & a+b+c\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
=(a+b+c)\(\begin{vmatrix} 1 & 1 & 1\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying C2 → C2 − C1, C3 → C3 − C1, we have:
△=(a+b+c)\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -a+b+c & 0 \\ 2c&0&-(a+b+c)\end{vmatrix}\)
=(a+b+c)3\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -1 & 0 \\ 2c&0&-1\end{vmatrix}\)
Expanding along C3, we have:
△=(a+b+c)3(-1)(-1)=(a+b+c)3
Hence, the given result is proved.
(ii) △=\(\begin{vmatrix} x+y+2z & x & y\\ z & y+z+2x & y\\ z &x&z+x+2y \end{vmatrix}\)
Applying C1 → C1 + C2 + C3, we have:
△=\(\begin{vmatrix} 2(x+y+z) & x & y\\ 2(x+y+z) & y+z+2x & y\\ 2(x+y+z) &x&z+x+2y \end{vmatrix}\)
=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 1 & y+z+2x & y\\ 1 &x&z+x+2y \end{vmatrix}\)
Applying R2 → R2 − R1 and R3 → R3 − R1, we have:
△=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 0 &x+y+z & y\\ 0 &0&x+y+z \end{vmatrix}\)
△=2(x+y+z)3\(\begin{vmatrix} 1 & x & y\\ 0 &1 & 0\\ 0 &0&1\end{vmatrix}\)
Expanding along R3, we have:
△=2(x+y+z)3(1)(1-0)=2(x+y+z)3
Hence, the given result is proved.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______

Read More: Properties of Determinants