(i) △=\(\begin{vmatrix} a-b-c & 2a & 2a\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying R1 → R1 + R2 + R3, we have:
△=I\(\begin{vmatrix} a+b+c & a+b+c & a+b+c\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
=(a+b+c)\(\begin{vmatrix} 1 & 1 & 1\\ 2b & b-c-a & 2b \\ 2c&2c&c-a-b\end{vmatrix}\)
Applying C2 → C2 − C1, C3 → C3 − C1, we have:
△=(a+b+c)\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -a+b+c & 0 \\ 2c&0&-(a+b+c)\end{vmatrix}\)
=(a+b+c)3\(\begin{vmatrix} 1 & 0 & 0\\ 2b & -1 & 0 \\ 2c&0&-1\end{vmatrix}\)
Expanding along C3, we have:
△=(a+b+c)3(-1)(-1)=(a+b+c)3
Hence, the given result is proved.
(ii) △=\(\begin{vmatrix} x+y+2z & x & y\\ z & y+z+2x & y\\ z &x&z+x+2y \end{vmatrix}\)
Applying C1 → C1 + C2 + C3, we have:
△=\(\begin{vmatrix} 2(x+y+z) & x & y\\ 2(x+y+z) & y+z+2x & y\\ 2(x+y+z) &x&z+x+2y \end{vmatrix}\)
=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 1 & y+z+2x & y\\ 1 &x&z+x+2y \end{vmatrix}\)
Applying R2 → R2 − R1 and R3 → R3 − R1, we have:
△=2(x+y+z)\(\begin{vmatrix} 1 & x & y\\ 0 &x+y+z & y\\ 0 &0&x+y+z \end{vmatrix}\)
△=2(x+y+z)3\(\begin{vmatrix} 1 & x & y\\ 0 &1 & 0\\ 0 &0&1\end{vmatrix}\)
Expanding along R3, we have:
△=2(x+y+z)3(1)(1-0)=2(x+y+z)3
Hence, the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Read More: Properties of Determinants