We use the cyclic nature of powers of \( i \):
\[
i^1 = i,\quad i^2 = -1,\quad i^3 = -i,\quad i^4 = 1,\quad i^5 = i,\ldots
\]
So,
\[
i^{18} = i^{(4 \times 4 + 2)} = i^2 = -1\\
i^7 = i^3 = -i\\
i^4 = 1 \Rightarrow 1 + i^4 = 1 + 1 = 2\\
i^2 = -1,\quad i^{22} = i^2 = -1
\]
Now substitute:
\[
i^{18} - 3i^7 + i^2(1 + i^4)(i^{22}) = -1 - 3(-i) + (-1)(2)(-1)
\]
\[
= -1 + 3i + 2 = 1 + 3i
\]