$ \begin{vmatrix} x + 1 & x - 1 \\ x^2 + x + 1 & x^2 - x + 1 \end{vmatrix} $ is equal to:
The determinant of a \( 2 \times 2 \) matrix is given by:
\[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \]
For the given matrix:
\[ \begin{vmatrix} x + 1 & x - 1 \\ x^2 + x + 1 & x^2 - x + 1 \end{vmatrix}, \]
we have:
\[ a = x + 1, \quad b = x - 1, \quad c = x^2 + x + 1, \quad d = x^2 - x + 1. \]
Step 1: Calculate the determinant.
\[ \text{Determinant} = (x + 1)(x^2 - x + 1) - (x - 1)(x^2 + x + 1). \]
Step 2: Expand the terms.
\[ (x + 1)(x^2 - x + 1) = x^3 - x^2 + x + x^2 - x + 1 = x^3 + x + 1, \]
\[ (x - 1)(x^2 + x + 1) = x^3 + x^2 + x - x^2 - x - 1 = x^3 - 1. \]
Step 3: Simplify the determinant.
\[ \text{Determinant} = (x^3 + x + 1) - (x^3 - 1) = x^3 + x + 1 - x^3 + 1 = 2. \]
Final Answer:
\[ \boxed{2} \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______