The given matrix \( A \) is: \[ A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}. \] To solve the system of equations using \( A^{-1} \), we must first determine whether \( A \) is invertible.
Step 1: Compute the determinant of \( A \). The determinant of \( A \) is: \[ |A| = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix}. \] Using cofactor expansion along the first row: \[ |A| = 2 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}. \] Simplifying the \( 2 \times 2 \) determinants: \[ |A| = 2(1 \cdot 2 - 1 \cdot 2) - 3(1 \cdot 2 - 1 \cdot 2) + 2(1 \cdot 1 - 1 \cdot 1). \] \[ |A| = 2(0) - 3(0) + 2(0) = 0. \]
Step 2: Check invertibility of \( A \). Since \( |A| = 0 \), the matrix \( A \) is singular, meaning it does not have an inverse.
Step 3: Conclusion. Because \( A \) is not invertible, the system of equations cannot be solved using \( A^{-1} \).
Final Answer: \[ \boxed{\text{The matrix } A \text{ is singular, so } A^{-1} \text{ does not exist. The system cannot be solved using the inverse method.}} \]
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: