The given matrix \( A \) is: \[ A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}. \] To solve the system of equations using \( A^{-1} \), we must first determine whether \( A \) is invertible.
Step 1: Compute the determinant of \( A \). The determinant of \( A \) is: \[ |A| = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix}. \] Using cofactor expansion along the first row: \[ |A| = 2 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}. \] Simplifying the \( 2 \times 2 \) determinants: \[ |A| = 2(1 \cdot 2 - 1 \cdot 2) - 3(1 \cdot 2 - 1 \cdot 2) + 2(1 \cdot 1 - 1 \cdot 1). \] \[ |A| = 2(0) - 3(0) + 2(0) = 0. \]
Step 2: Check invertibility of \( A \). Since \( |A| = 0 \), the matrix \( A \) is singular, meaning it does not have an inverse.
Step 3: Conclusion. Because \( A \) is not invertible, the system of equations cannot be solved using \( A^{-1} \).
Final Answer: \[ \boxed{\text{The matrix } A \text{ is singular, so } A^{-1} \text{ does not exist. The system cannot be solved using the inverse method.}} \]
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).