The given matrix \( A \) is: \[ A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}. \] To solve the system of equations using \( A^{-1} \), we must first determine whether \( A \) is invertible.
Step 1: Compute the determinant of \( A \). The determinant of \( A \) is: \[ |A| = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix}. \] Using cofactor expansion along the first row: \[ |A| = 2 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}. \] Simplifying the \( 2 \times 2 \) determinants: \[ |A| = 2(1 \cdot 2 - 1 \cdot 2) - 3(1 \cdot 2 - 1 \cdot 2) + 2(1 \cdot 1 - 1 \cdot 1). \] \[ |A| = 2(0) - 3(0) + 2(0) = 0. \]
Step 2: Check invertibility of \( A \). Since \( |A| = 0 \), the matrix \( A \) is singular, meaning it does not have an inverse.
Step 3: Conclusion. Because \( A \) is not invertible, the system of equations cannot be solved using \( A^{-1} \).
Final Answer: \[ \boxed{\text{The matrix } A \text{ is singular, so } A^{-1} \text{ does not exist. The system cannot be solved using the inverse method.}} \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Observe the given sequence of nitrogenous bases on a DNA fragment and answer the following questions: 
(a) Name the restriction enzyme which can recognise the DNA sequence.
(b) Write the sequence after restriction enzyme cut the palindrome.
(c) Why are the ends generated after digestion called as ‘Sticky Ends’?