To evaluate \( \int_{0}^{\frac{\pi}{2}} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} \):
\begin{itemize}
\item Use the substitution \( \cos^2 x = t \), so \( -\sin 2x \, dx = dt \).
\item Change the limits accordingly:
\[
\text{When } x = 0, \, t = 1; \quad \text{When } x = \frac{\pi}{2}, \, t = 0.
\]
\item Rewrite the integral and solve using standard results for rational functions.
\end{itemize}
The final result simplifies to:
\[
\int_{0}^{\frac{\pi}{2}} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi}{2\sqrt{a^2 + b^2}}.
\]