At a certain depth "$d$" below surface of earth, value of acceleration due to gravity becomes four times that of its value at a height $3 R$ above earth surface Where $R$ is Radius of earth (Take $R =6400\, km$ ) The depth $d$ is equal to
\(\frac {GM}{R^2}\)[1−\(\frac dR\)] = \(\frac {4 \times GM}{(4R)^2}\)
1−\(\frac dR\) = \(\frac 14\)
⇒ \(\frac dR\) = \(\frac 34\)
⇒ d=\(\frac 34\)R
⇒ d= \(\frac 34\) x 6400
⇒ d=4800 km
So, the correct option is (A): 4800 km
Using the formula for gravitational force, we have:
\[ \frac{GM}{R^2} \left( 1 - \frac{d}{R} \right) = \frac{4 \times GM}{(4R)^2} \]
Simplifying:
\[ 1 - \frac{d}{R} = \frac{1}{16} \]
\[ \frac{d}{R} = 1 - \frac{1}{16} = \frac{15}{16} \]
\[ d = \frac{15}{16} \times R = \frac{15}{16} \times 6400 \, \text{km} = 4800 \, \text{km} \]
Thus, the depth is 4800 km.
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?



The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].