1. Dissociation of Cu(OH)\(_2\):
\[
\text{Cu(OH)}_2 (\text{s}) \rightleftharpoons \text{Cu}^{2+} (\text{aq}) + 2\text{OH}^- (\text{aq}).
\]
\[
K_\text{sp} = [\text{Cu}^{2+}] [\text{OH}^-]^2.
\]
2. At pH = 14:
\[
\text{pH} = 14 \implies \text{pOH} = 0 \implies [\text{OH}^-] = 1 \, \text{M}.
\]
Substituting in the solubility product expression:
\[
[\text{Cu}^{2+}] = \frac{K_\text{sp}}{[\text{OH}^-]^2} = \frac{1 \times 10^{-20}}{1^2} = 1 \times 10^{-20} \, \text{M}.
\]
3. Reduction Half Reaction:
\[
\text{Cu}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Cu} (\text{s}).
\]
Using the Nernst equation:
\[
E = E^\circ - \frac{0.059}{n} \log_{10} \left( \frac{1}{[\text{Cu}^{2+}]} \right).
\]
Here:
- \(E^\circ = 0.034 \, \text{V}\),
- \(n = 2\),
- \([\text{Cu}^{2+}] = 1 \times 10^{-20}\).
4. Substitute Values in Nernst Equation:
\[
E = 0.034 - \frac{0.059}{2} \log_{10} \left( \frac{1}{1 \times 10^{-20}} \right).
\]
Simplify the logarithmic term:
\[
\log_{10} \left( \frac{1}{1 \times 10^{-20}} \right) = \log_{10} (10^{20}) = 20.
\]
Substituting back:
\[
E = 0.034 - \frac{0.059}{2} \times 20.
\]
\[
E = 0.034 - 0.59.
\]
\[
E = -0.25 \, \text{V}.
\]
5. Express in Required Format:
The reduction potential is \(-x \times 10^{-2}\), where \(x = 25\).
% Final Answer
Final Answer: \( \boxed{25} \)