At 298 K, for a first order reaction (A → P) the following graph is obtained. The rate constant (in s\(^{-1}\)) and initial concentration (in mol L\(^{-1}\)) of ‘A’ are respectively:

Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
For $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$ $\mathrm{E}_{\mathrm{a}}$ for forward and backward reaction are 180 and $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If catalyst lowers $\mathrm{E}_{\mathrm{a}}$ for both reaction by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following statement is correct?

Young double slit arrangement is placed in a liquid medium of 1.2 refractive index. Distance between the slits and screen is 2.4 m.
Slit separation is 1 mm. The wavelength of incident light is 5893 Å. The fringe width is: