Step 1: Finding the center and radius of the given circle Rewriting the given equation, \[ x^2 + y^2 - 6x + 6y + 17 = 0 \] Completing the square: \[ (x - 3)^2 - 9 + (y + 3)^2 - 9 + 17 = 0 \] \[ (x - 3)^2 + (y + 3)^2 = 1 \] So, the center is \( (3, -3) \) and radius \( R = 1 \).
Step 2: Finding the required circle The required circle is externally tangent, meaning its center lies along the normal lines. Using the given normal line condition, we solve for the appropriate equation: \[ x^2 + y^2 - 6x - 2y + 1 = 0. \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))