To verify the given assertion and reason, we calculate the determinant of matrix \( A \):
\[
|A| =
\begin{vmatrix}
1 & \cos \theta & 1 \\
-\cos \theta & 1 & \cos \theta \\
-1 & -\cos \theta & 1
\end{vmatrix}.
\]
Using cofactor expansion along the first row:
\[
|A| = 1 \cdot \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix}
- \cos \theta \cdot \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix}
+ 1 \cdot \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix}.
\]
1. Compute the first minor:
\[
\begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix}
= (1)(1) - (-\cos \theta)(\cos \theta) = 1 + \cos^2 \theta.
\]
2. Compute the second minor:
\[
\begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix}
= (-\cos \theta)(1) - (\cos \theta)(-1) = -\cos \theta + \cos \theta = 0.
\]
3. Compute the third minor:
\[
\begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix}
= (-\cos \theta)(-\cos \theta) - (1)(-1) = \cos^2 \theta + 1.
\]
Substitute back into the determinant:
\[
|A| = 1 \cdot (1 + \cos^2 \theta) - \cos \theta \cdot 0 + 1 \cdot (1 + \cos^2 \theta).
\]
Simplify:
\[
|A| = (1 + \cos^2 \theta) + (1 + \cos^2 \theta) = 2 + 2\cos^2 \theta.
\]
Since \(\cos \theta \in [-1, 1]\), we have:
\[
\cos^2 \theta \in [0, 1].
\]
Thus, the determinant \(|A|\) varies as:
\[
|A| = 2 + 2\cos^2 \theta \in [2, 4].
\]
Verification of Assertion (A): The determinant \(|A|\) lies in the interval \([2, 4]\), so the assertion is true.
Verification of Reason (R): The cosine function satisfies \(\cos \theta \in [-1, 1]\) for all \(\theta \in [0, 2\pi]\), so the reason is also true.
Conclusion: Both Assertion (A) and Reason (R) are true, and the Reason (R) correctly explains the Assertion (A).