Assertion (A): A line in space cannot be drawn perpendicular to \( x \), \( y \), and \( z \) axes simultaneously.
Reason (R): For any line making angles \( \alpha, \beta, \gamma \) with the positive directions of \( x \), \( y \), and \( z \) axes respectively, \[ \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1. \]
A line in three-dimensional space cannot be perpendicular to all three axes simultaneously. If a line is perpendicular to all three axes, the direction cosines \( \cos\alpha, \cos\beta, \cos\gamma \) would all be zero, which would violate the fundamental relation of direction cosines: \[ \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1. \]
The given equation \( \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 \) ensures that at least one of the direction cosines is non-zero, indicating that the line cannot be simultaneously perpendicular to \( x \), \( y \), and \( z \) axes.
Conclusion: Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |