As per the arrangement given, the distance between the capacitor plates are \(a\) and \(b\) and \(a \neq b\). Using the diagram we can write
\[
b = 5 - a - 1 = (4 - a) \text{ in mm}
\]
As we know the capacitance of a capacitor \(C = \dfrac{\varepsilon_0 A}{d}\) and in series arrangement
\[
\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}
\]
\[
\frac{1}{C_{eq}} = \frac{a A}{\varepsilon_0 A} + \frac{4 - a}{\varepsilon_0 A} = \frac{4 \text{ (in mm)}}{\varepsilon_0 A}
\]
or
\[
C_{eq} = \frac{\varepsilon_0 A}{4(\text{mm})}
\]
Given \(A = 200 \text{ cm}^2\),
\[
C_{eq} = \varepsilon_0 \times 200 \times 10^{-4}
= 4 \times 10^{-3}
= 50 \times 10^{-1}
\]
or
\[
C_{eq} = 5 \varepsilon_0 \text{ farad}
\]
Therefore, \(C_{eq} = 5 \varepsilon_0\), so \(x = 5\).