The electronic configurations and the number of unpaired electrons for each element are as follows:
Sc: \([ \text{Ar} ] 4s^2 3d^1 \quad (1 \text{ unpaired electron})\)
Cr: \([ \text{Ar} ] 4s^1 3d^5 \quad (6 \text{ unpaired electrons})\)
V: \([ \text{Ar} ] 4s^2 3d^3 \quad (3 \text{ unpaired electrons})\)
Ti: \([ \text{Ar} ] 4s^2 3d^2 \quad (2 \text{ unpaired electrons})\)
Mn: \([ \text{Ar} ] 4s^2 3d^5 \quad (5 \text{ unpaired electrons})\)
Arranging them in increasing order of unpaired electrons, we get:
\(\text{Sc (A)} < \text{Ti (D)} < \text{V (C)} < \text{Mn (E)} < \text{Cr (B)}\)
List-I ( Ions ) | List-II ( No. of unpaired electrons ) | ||
A | Zn$^{2+}$ | (I) | 0 |
B | Cu$^{2+}$ | (II) | 4 |
C | Ni$^{2+}$ | (III) | 1 |
D | Fe$^{2+}$ | (IV) | 2 |
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)