The gain in potential energy of the object,
ΔU=Uf–Ui
ΔU=−\(\frac{GMm}{4R}+\frac{GMm}{R}\)
\(ΔU=\frac{3GMm}{4R}\)
\(ΔU=\frac{3}{4}mgR\)
\(ΔU= 48 x 10^6J\)
\(ΔU= 48 MJ\)
So, the correct option is (A): 48 MJ
Consider a water tank shown in the figure. It has one wall at \(x = L\) and can be taken to be very wide in the z direction. When filled with a liquid of surface tension \(S\) and density \( \rho \), the liquid surface makes angle \( \theta_0 \) (\( \theta_0 < < 1 \)) with the x-axis at \(x = L\). If \(y(x)\) is the height of the surface then the equation for \(y(x)\) is: (take \(g\) as the acceleration due to gravity)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
The center of mass of a body or system of a particle is defined as a point where the whole of the mass of the body or all the masses of a set of particles appeared to be concentrated.
The formula for the Centre of Mass:
The imaginary point through which on an object or a system, the force of Gravity is acted upon is known as the Centre of Gravity of that system. Usually, it is assumed while doing mechanical problems that the gravitational field is uniform which means that the Centre of Gravity and the Centre of Mass is at the same position.