Given: \( AB = x \), \( BC = x \), \( AD = 3x \) \[ \text{Total Distance} = 3x \] \[ \text{Total Time} = \frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3} \] \[ \text{Average Speed} = \frac{3x}{\frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3}} = \frac{3v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1} \]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions.
The equations of motion in a straight line are:
v=u+at
s=ut+½ at2
v2-u2=2as
Where,