Given: \( AB = x \), \( BC = x \), \( AD = 3x \) \[ \text{Total Distance} = 3x \] \[ \text{Total Time} = \frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3} \] \[ \text{Average Speed} = \frac{3x}{\frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3}} = \frac{3v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1} \]
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions.
The equations of motion in a straight line are:
v=u+at
s=ut+½ at2
v2-u2=2as
Where,