The radiation pressure \( P \) is given by:
\(P = \frac{I \cdot \mu}{c},\)
where:
- \( I \) is the intensity of the radiation,
- \( \mu \) is the absorption coefficient (fraction of radiation absorbed, here \( \mu = 1 \) for total absorption),
- \( c \) is the speed of light in a vacuum.
Substitute the given values:
- \( I = 6 \times 10^8 \, \text{W/m}^2 \),
- \( \mu = 3 \),
- \( c = 3 \times 10^8 \, \text{m/s} \).
Calculate \( P \):
\(P = \frac{I \cdot \mu}{c} = \frac{6 \times 10^8 \cdot 3}{3 \times 10^8}.\)
Simplify:
\(P = 6 \, \text{N/m}^2.\)
The Correct answer is: \(6 \, \text{Nm}^{-2}\)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: