To find the radiation pressure on the object due to the electromagnetic wave, we start by understanding the concept of radiation pressure in physics. Radiation pressure is exerted upon any surface due to the exchange of momentum between the object and the incident electromagnetic wave. The formula to calculate radiation pressure \(P\) when the wave is completely absorbed is given by:
\(P = \frac{I}{c}\)
where:
Since the medium's refractive index is given as \(3\), the speed of light in the medium \(c_m\) is:
\(c_m = \frac{c}{n} = \frac{3 \times 10^8 \, \text{m/s}}{3} = 1 \times 10^8 \, \text{m/s}\)
Now, substitute the values into the radiation pressure formula:
\(P = \frac{6 \times 10^8 \, \text{W/m}^2}{1 \times 10^8 \, \text{m/s}} = 6 \, \text{Nm}^{-2}\)
Thus, the radiation pressure exerted on the object is \(6 \, \text{Nm}^{-2}\).
The radiation pressure \( P \) is given by:
\(P = \frac{I \cdot \mu}{c},\)
where:
- \( I \) is the intensity of the radiation,
- \( \mu \) is the absorption coefficient (fraction of radiation absorbed, here \( \mu = 1 \) for total absorption),
- \( c \) is the speed of light in a vacuum.
Substitute the given values:
- \( I = 6 \times 10^8 \, \text{W/m}^2 \),
- \( \mu = 3 \),
- \( c = 3 \times 10^8 \, \text{m/s} \).
Calculate \( P \):
\(P = \frac{I \cdot \mu}{c} = \frac{6 \times 10^8 \cdot 3}{3 \times 10^8}.\)
Simplify:
\(P = 6 \, \text{N/m}^2.\)
The Correct answer is: \(6 \, \text{Nm}^{-2}\)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :