
Potential Difference Calculation
The potential difference is calculated by considering contributions from both a line charge and a sphere charge.
Step 1: Potential Difference Due to the Line Charge
The potential difference due to the line charge is given by: \[ (V_P - V_R)_{\text{line charge}} = 2k \lambda \ln \left( \frac{r_P}{r_R} \right) \] where:
Given that: \[ r_P = 126 \, \text{V} \]
Step 2: Potential Difference Due to the Sphere Charge
The potential difference due to the sphere charge is: \[ (V_P - V_R)_{\text{sphere}} = kq \left( \frac{1}{r_R} - \frac{1}{r_R} \right) = kq \cdot \frac{2}{r_R} \] where:
Given: \[ (V_P - V_R)_{\text{sphere}} = 45 \, \text{V} \]
Step 3: Total Potential Difference
The total potential difference is: \[ V_P - V_R = 126 + 45 = 171 \, \text{V} \]
The total potential difference between points P and R is 171 V.
To solve this problem, we need to compute the potential difference between points P and R due to the infinitely long charged wire and the spherical shell with uniformly distributed charge.
Given:
Let’s compute the potential difference \( V_P - V_R \) due to the two charges:
1. Potential due to the spherical shell:
- For a spherical shell, potential inside is constant and equal to the potential on the surface:
\( V_{\text{shell}}(r \leq R_s) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{R_s} \)
= \( 9 \times 10^9 \cdot \frac{10 \times 10^{-9}}{1} = 90 \, \text{V} \)
So, \( V_P^{\text{(shell)}} = 90 \, \text{V} \) - For point R (outside the shell):
\( V_R^{\text{(shell)}} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{r} = 9 \times 10^9 \cdot \frac{10 \times 10^{-9}}{2} = 45 \, \text{V} \)
2. Potential due to the infinite wire:
- The potential at a distance \( r \) from an infinitely long line of charge is:
\( V = \frac{\lambda}{2\pi\varepsilon_0} \ln\left( \frac{r_{\text{ref}}}{r} \right) \)
But since we are taking the potential difference \( V_P - V_R \), the reference cancels out and we can write:
\( \Delta V = \frac{\lambda}{2\pi\varepsilon_0} \ln\left( \frac{r_R}{r_P} \right) \)
Substitute values:
- \( r_R = 2 \, \text{m}, \quad r_P = 0.5 \, \text{m} \)
- \( \lambda = 5 \times 10^{-9} \, \text{C/m} \)
- \( \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \Rightarrow \frac{1}{2\pi\varepsilon_0} = 18 \times 10^9 \)
\( V_P^{\text{(wire)}} - V_R^{\text{(wire)}} = \lambda \cdot \frac{1}{2\pi\varepsilon_0} \ln\left( \frac{2}{0.5} \right) \)
= \( 5 \times 10^{-9} \cdot 18 \times 10^9 \cdot \ln(4) \)
= \( 90 \cdot \ln(4) \)
But \( \ln(4) = \ln(2^2) = 2 \cdot \ln(2) = 2 \cdot 0.7 = 1.4 \)
So, contribution = \( 90 \cdot 1.4 = 126 \, \text{V} \)
3. Total Potential Difference:
\( V_P - V_R = (V_P^{\text{(shell)}} - V_R^{\text{(shell)}}) + (V_P^{\text{(wire)}} - V_R^{\text{(wire)}}) \)
= \( (90 - 45) + 126 = 45 + 126 = \boxed{171} \, \text{V} \)
Final Answer:
The magnitude of the potential difference between points P and R is 171 V.
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 