The potential difference is calculated by considering contributions from both a line charge and a sphere charge.
The potential difference due to the line charge is given by: \[ (V_P - V_R)_{\text{line charge}} = 2k \lambda \ln \left( \frac{r_P}{r_R} \right) \] where:
Given that: \[ r_P = 126 \, \text{V} \]
The potential difference due to the sphere charge is: \[ (V_P - V_R)_{\text{sphere}} = kq \left( \frac{1}{r_R} - \frac{1}{r_R} \right) = kq \cdot \frac{2}{r_R} \] where:
Given: \[ (V_P - V_R)_{\text{sphere}} = 45 \, \text{V} \]
The total potential difference is: \[ V_P - V_R = 126 + 45 = 171 \, \text{V} \]
The total potential difference between points P and R is 171 V.
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below: