Electric Field Due to an Infinitely Long Charged Wire:
For an infinitely long line of charge with linear charge density \(\lambda\), the electric field \(E\) at a distance \(r\) from the wire is given by:
\[ E = \frac{2k\lambda}{r} \]
where \(k\) is Coulomb’s constant.
Centripetal Force on the Electron:
The electron revolves in a circular path due to the centripetal force provided by the electric field. The centripetal force \(F\) acting on the electron of charge \(e\) is:
\[ F = eE = e \times \frac{2k\lambda}{r} = \frac{2ke\lambda}{r} \]
This force provides the necessary centripetal force for the electron’s circular motion, which is given by:
\[ F = \frac{mv^2}{r} \] where \(m\) is the mass of the electron and \(v\) is its velocity.
Kinetic Energy of the Electron:
Equating the expressions for the centripetal force:
\[ \frac{mv^2}{r} = \frac{2ke\lambda}{r} \] Simplifying, we get:
\[ mv^2 = 2ke\lambda \]
The kinetic energy \(KE\) of the electron is:
\[ KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 2ke\lambda = ke\lambda \]
Notice that the kinetic energy \(KE\) is independent of \(r\) and remains constant as \(r\) changes.
Conclusion:
Since the kinetic energy of the electron does not depend on the radius \(r\), the correct graph showing the kinetic energy as a constant with respect to \(r\) is Option (2).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: