To solve the problem, we need to balance the magnetic force with the electric force to ensure the electron continues in a straight line. The equation for magnetic force is \(F_{\text{magnetic}}=qvB\) and for electric force is \(F_{\text{electric}}=qE\). Setting \(F_{\text{magnetic}}=F_{\text{electric}}\), we get \(qvB=qE\), thus \(E=vB\).
First, we find the velocity \(v\) of the electron using its kinetic energy:
\(K.E.=\frac{1}{2}mv^2=5 \, \text{eV}=5 \times 1.6 \times 10^{-19} \, \text{J}\).
Rearranging gives:
\(v^2=\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}\)
Calculating \(v\), we find:
\(v=\sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}}\approx1.32 \times 10^6 \, \text{ms}^{-1}\)
Now calculate \(E\) using \(E=vB\) with \(B=3 \, \mu\text{T}=3 \times 10^{-6} \, \text{T}\):
\(E=1.32 \times 10^6 \times 3 \times 10^{-6}=3.96 \, \text{NC}^{-1}\)
The calculated electric field \(E\approx3.96 \, \text{NC}^{-1}\) falls within the given range 4,4, confirming it is acceptable. The electromagnetic forces are balanced, indicating the electron continues its path undeviated.
For the given condition of moving undeflected, the net force should be zero:
\[qE = qvB \implies E = vB\]
The velocity $v$ can be expressed in terms of kinetic energy:
\[v = \sqrt{\frac{2KE}{m}}\]
Substituting this into the expression for $E$:
\[E = \sqrt{\frac{2KE}{m}} \cdot B\]
Substituting the given values:
\[E = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
Calculating:
\[E = \sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{\frac{1.6 \times 10^{12}}{9}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{1.78 \times 10^{12}} \cdot 3 \times 10^{-6}\]
\[E = 4 \, \text{N/C}\]
Final Answer: $E = 4 \, \text{N/C}$.
An air filled parallel plate electrostatic actuator is shown in the figure. The area of each capacitor plate is $100 \mu m \times 100 \mu m$. The distance between the plates $d_0 = 1 \mu m$ when both the capacitor charge and spring restoring force are zero as shown in Figure (a). A linear spring of constant $k = 0.01 N/m$ is connected to the movable plate. When charge is supplied to the capacitor using a current source, the top plate moves as shown in Figure (b). The magnitude of minimum charge (Q) required to momentarily close the gap between the plates is ________ $\times 10^{-14} C$ (rounded off to two decimal places). Note: Assume a full range of motion is possible for the top plate and there is no fringe capacitance. The permittivity of free space is $\epsilon_0 = 8.85 \times 10^{-12} F/m$ and relative permittivity of air ($\epsilon_r$) is 1.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.