For the given condition of moving undeflected, the net force should be zero:
\[qE = qvB \implies E = vB\]
The velocity $v$ can be expressed in terms of kinetic energy:
\[v = \sqrt{\frac{2KE}{m}}\]
Substituting this into the expression for $E$:
\[E = \sqrt{\frac{2KE}{m}} \cdot B\]
Substituting the given values:
\[E = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
Calculating:
\[E = \sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{\frac{1.6 \times 10^{12}}{9}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{1.78 \times 10^{12}} \cdot 3 \times 10^{-6}\]
\[E = 4 \, \text{N/C}\]
Final Answer: $E = 4 \, \text{N/C}$.
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: