For the given condition of moving undeflected, the net force should be zero:
\[qE = qvB \implies E = vB\]
The velocity $v$ can be expressed in terms of kinetic energy:
\[v = \sqrt{\frac{2KE}{m}}\]
Substituting this into the expression for $E$:
\[E = \sqrt{\frac{2KE}{m}} \cdot B\]
Substituting the given values:
\[E = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
Calculating:
\[E = \sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{\frac{1.6 \times 10^{12}}{9}} \cdot 3 \times 10^{-6}\]
\[E = \sqrt{1.78 \times 10^{12}} \cdot 3 \times 10^{-6}\]
\[E = 4 \, \text{N/C}\]
Final Answer: $E = 4 \, \text{N/C}$.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: