The electrostatic force between the electron and nucleus is given by:
\[ F = \frac{K(Ze)(e)}{r^2} = \frac{mv^2}{r} \]
Kinetic energy (KE) of the electron is:
\[ \text{KE} = \frac{1}{2}mv^2 = \frac{1}{2} \frac{K(Ze)(e)}{r} \]
Potential energy (PE) is given by:
\[ \text{PE} = -\frac{K(Ze)(e)}{r} \]
Total energy (TE) is:
\[ \text{TE} = \text{KE} + \text{PE} = \frac{K(Ze)(e)}{2r} + \left( -\frac{K(Ze)(e)}{r} \right) = -\frac{K(Ze)(e)}{2r} \]
Thus, the relationship between total energy and potential energy is:
\[ 2 \times \text{TE} = \text{PE} \]
Therefore, \( 2E = U \), which corresponds to Option (4).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.