The electrostatic force between the electron and nucleus is given by:
\[ F = \frac{K(Ze)(e)}{r^2} = \frac{mv^2}{r} \]
Kinetic energy (KE) of the electron is:
\[ \text{KE} = \frac{1}{2}mv^2 = \frac{1}{2} \frac{K(Ze)(e)}{r} \]
Potential energy (PE) is given by:
\[ \text{PE} = -\frac{K(Ze)(e)}{r} \]
Total energy (TE) is:
\[ \text{TE} = \text{KE} + \text{PE} = \frac{K(Ze)(e)}{2r} + \left( -\frac{K(Ze)(e)}{r} \right) = -\frac{K(Ze)(e)}{2r} \]
Thus, the relationship between total energy and potential energy is:
\[ 2 \times \text{TE} = \text{PE} \]
Therefore, \( 2E = U \), which corresponds to Option (4).
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Let $x_1, x_2, \ldots, x_{10}$ be ten observations such that
\[\sum_{i=1}^{10} (x_i - 2) = 30, \quad \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \quad \beta > 2\]
and their variance is $\frac{4}{5}$. If $\mu$ and $\sigma^2$ are respectively the mean and the variance of
\[ 2(x_1 - 1) + 4\beta, 2(x_2 - 1) + 4\beta, \ldots, 2(x_{10} - 1) + 4\beta\]
then $\frac{\beta \mu}{\sigma^2}$ is equal to:
The value of $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!}$ is: