To solve this problem, we need to determine how the de Broglie wavelength of an electron changes over time when it is subjected to an electric field. Let's break this down step-by-step:
This corresponds to the correct option: \(\lambda_0 \sqrt{\frac{1}{1 + \frac{e^2 E_0^2 t^2}{m^2 v_0^2}}}\). This shows that the de Broglie wavelength decreases as the speed of the electron increases due to the electric field component in the \(\hat{k}\) direction, thereby validating the selected option.
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Net dipole moment of a polar linear isotropic dielectric substance is not zero even in the absence of an external electric field. Reason
(R): In absence of an external electric field, the different permanent dipoles of a polar dielectric substance are oriented in random directions.
In the light of the above statements, choose the most appropriate answer from the options given below:
Two large plane parallel conducting plates are kept 10 cm apart as shown in figure. The potential difference between them is $ V $. The potential difference between the points A and B (shown in the figure) is: 
A metallic ring is uniformly charged as shown in the figure. AC and BD are two mutually perpendicular diameters. Electric field due to arc AB to O is ‘E’ magnitude. What would be the magnitude of electric field at ‘O’ due to arc ABC? 
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: