An electron is moving along positive x direction in xy plane, magnetic field points in negative z direction, then the force due to magnetic field on electron points in the direction
j
-j
k
-k
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Biot-Savart’s law is an equation that gives the magnetic field produced due to a current-carrying segment. This segment is taken as a vector quantity known as the current element. In other words, Biot-Savart Law states that if a current carrying conductor of length dl produces a magnetic field dB, the force on another similar current-carrying conductor depends upon the size, orientation and length of the first current carrying element.
The equation of Biot-Savart law is given by,
\(dB = \frac{\mu_0}{4\pi} \frac{Idl sin \theta}{r^2}\)
For detailed derivation on Biot Savart Law, read more.