A 60 V DC source with an internal resistance \(R_{int} = 0.5 \, \Omega\) is connected through a switch to a pair of infinitely long rails separated by \(l = 1\) m as shown in the figure. The rails are placed in a constant, uniform magnetic field of flux density \(B = 0.5\) T, directed into the page. A conducting bar placed on these rails is free to move. At the instant of closing the switch, the force induced on the bar is

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is: 
In the circuit shown, the galvanometer (G) has an internal resistance of $100 \Omega$. The galvanometer current $I_G$ is ________ $\mu A$ (rounded off to the nearest integer).

Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.