In an electromagnetic wave, the magnitudes of the electric and magnetic fields are related by:
\[
c = \frac{|E|}{|B|}
\]
where:
- \( c = 3 \times 10^8 \, {m/s} \) (speed of light),
- \( |E| = 8 \, {V/m} \) (electric field).
Rearranging the formula to solve for \( |B| \), we get:
\[
|B| = \frac{|E|}{c} = \frac{8}{3 \times 10^8}
\]
Step 1: Calculating the magnitude of the magnetic field:
\[
|B| = \frac{8}{3 \times 10^8} = 2.67 \times 10^{-8} \, {T}
\]
This value is approximately \( 2.66 \times 10^{-8} \, {T} \).
Thus, the magnitude of the magnetic field vector is \( 2.66 \times 10^{-8} \, {T} \).