Electric flux is:
\[\phi = \vec{E} \cdot \vec{A}.\]
The area vector is:
\[\vec{A} = A \hat{n} = 4 \cdot \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}.\]
Dot product:
\[\phi = \left( \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}} \right) \cdot \left( \frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{\sqrt{6}} \right).\]
\[\phi = \frac{4}{6} (2 \cdot 8 + 6 \cdot 4 + 8 \cdot 4).\]
\[\phi = \frac{4}{6} (16 + 24 + 32) = \frac{4}{6} \cdot 72 = 12 \, \text{V m}.\]
Final Answer: $12 \, \text{V m}$.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)