
The correct option is: (A):
\(\vec{p_1} = q \times 4 \times 10^{-3} \hat{j}\)
The potential \(V_0\) is given by:
\(V_0 = \frac{K \vec{p_1} \cdot \vec{r_1}}{|\vec{r_1}|^3}\)
Substituting the known values:
\(V_0 = \frac{9 \times 10^9 \times q \times [4 \times 10^{-3} \hat{j}] \cdot (0.1 \hat{i} + 0.1 \hat{j})}{\left(\sqrt{(0.1)^2 + (0.1)^2}\right)^3}\)
Simplifying the dot product:
\(V_0 = \frac{9 \times 10^9 \times q \times [0.4 \times 10^{-3}]}{(0.1)^2 \times 2 \sqrt{2}}\)
Now, +q and -q are moved to the points (-1,2) mm and (1,-2) mm, respectively. The new position vector is:
\(\vec{p} = q[-2 \hat{i} + 4 \hat{j}] \times 10^{-3}\)
The position vector \(\vec{r_1}\) remains:
\(\vec{r_1} = 0.1 \hat{i} + 0.1 \hat{j}\)
The new potential \(V\) is calculated as:
\(V = \frac{9 \times 10^9 (\vec{p}, \vec{r_1})}{|\vec{r_1}|^3}\)
Substituting the values:
\(V = \frac{9 \times 10^9 \times q \times [0.4 \times 10^{-3}]}{\left(\sqrt{(0.1)^2 + (0.1)^2}\right)^3}\)
Simplifying:
\(V = \frac{V_0}{2}\)
Thus, the new potential \(V\) is half of the original potential \(V_0\), confirming the relationship between the initial and final potentials.
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The waves that are produced when an electric field comes into contact with a magnetic field are known as Electromagnetic Waves or EM waves. The constitution of an oscillating magnetic field and electric fields gives rise to electromagnetic waves.
Electromagnetic waves can be grouped according to the direction of disturbance in them and according to the range of their frequency. Recall that a wave transfers energy from one point to another point in space. That means there are two things going on: the disturbance that defines a wave, and the propagation of wave. In this context the waves are grouped into the following two categories: