• Convert masses to kilograms: metal $m_m = 50\ \text{g} = 0.05\ \text{kg}$, water $m_w = 150\ \text{g} = 0.15\ \text{kg}$.
• Initial temperatures: $T_{m,i}=200^\circ\mathrm{C}$, $T_{w,i}=20^\circ\mathrm{C}$. Final equilibrium temperature: $T_f=50^\circ\mathrm{C}$.
• Heat lost by metal $= m_m c_m (T_{m,i}-T_f)$.
• Heat gained by water $= m_w c_w (T_f - T_{w,i})$ where $c_w = 4200\ \mathrm{J\,kg^{-1}K^{-1}}$.
• Equate heat lost and gained (neglecting losses to environment):
\[
m_m c_m (200-50) = m_w c_w (50-20).
\]
• Substitute numbers:
\[
0.05\,c_m \times 150 = 0.15 \times 4200 \times 30.
\]
\[
7.5\,c_m = 0.15 \times 4200 \times 30 = 18900.
\]
\[
c_m = \frac{18900}{7.5} = 2520\ \mathrm{J\,kg^{-1}K^{-1}}.
\]
• Hence the specific heat capacity of the metal is $2520\ \mathrm{J\,kg^{-1K^{-1}}$}.