Step 1: Expression for Current as a Function of Time
The current $ I(t) $ in the coil decreases uniformly from an initial value $ I_0 $ to zero over time $ T $. This implies that the current decreases linearly with time:
$$ I(t) = I_0 \left( 1 - \frac{t}{T} \right) $$
At $ t = 0 $, $ I(t) = I_0 $, and at $ t = T $, $ I(t) = 0 $.
Step 2: Relationship Between Charge and Current
The total charge $ Q $ passing through the coil is related to the current by:
$$ Q = \int_{0}^{T} I(t) \, dt $$
Substitute $ I(t) = I_0 \left( 1 - \frac{t}{T} \right) $:
$$ Q = \int_{0}^{T} I_0 \left( 1 - \frac{t}{T} \right) \, dt $$
Split the integral:
$$ Q = I_0 \int_{0}^{T} 1 \, dt - I_0 \int_{0}^{T} \frac{t}{T} \, dt $$
Evaluate each term:
$$ \int_{0}^{T} 1 \, dt = T $$
$$ \int_{0}^{T} \frac{t}{T} \, dt = \frac{1}{T} \int_{0}^{T} t \, dt = \frac{1}{T} \left[ \frac{t^2}{2} \right]_0^T = \frac{T}{2} $$
Thus:
$$ Q = I_0 T - I_0 \frac{T}{2} = I_0 \frac{T}{2} $$
Rearrange to find $ I_0 $:
$$ I_0 = \frac{2Q}{T} $$
Step 3: Heat Generated in the Coil
The heat generated in the coil is given by:
$$ H = \int_{0}^{T} I^2(t) R \, dt $$
Substitute $ I(t) = I_0 \left( 1 - \frac{t}{T} \right) $:
$$ H = \int_{0}^{T} \left[ I_0 \left( 1 - \frac{t}{T} \right) \right]^2 R \, dt $$
Expand the square:
$$ H = I_0^2 R \int_{0}^{T} \left( 1 - \frac{2t}{T} + \frac{t^2}{T^2} \right) \, dt $$
Split the integral:
$$ H = I_0^2 R \left[ \int_{0}^{T} 1 \, dt - \int_{0}^{T} \frac{2t}{T} \, dt + \int_{0}^{T} \frac{t^2}{T^2} \, dt \right] $$
Evaluate each term:
$$ \int_{0}^{T} 1 \, dt = T $$
$$ \int_{0}^{T} \frac{2t}{T} \, dt = \frac{2}{T} \int_{0}^{T} t \, dt = \frac{2}{T} \left[ \frac{t^2}{2} \right]_0^T = \frac{2}{T} \cdot \frac{T^2}{2} = T $$
$$ \int_{0}^{T} \frac{t^2}{T^2} \, dt = \frac{1}{T^2} \int_{0}^{T} t^2 \, dt = \frac{1}{T^2} \left[ \frac{t^3}{3} \right]_0^T = \frac{1}{T^2} \cdot \frac{T^3}{3} = \frac{T}{3} $$
Substitute back:
$$ H = I_0^2 R \left[ T - T + \frac{T}{3} \right] = I_0^2 R \cdot \frac{T}{3} $$
Substitute $ I_0 = \frac{2Q}{T} $:
$$ H = \left( \frac{2Q}{T} \right)^2 R \cdot \frac{T}{3} $$
Simplify:
$$ H = \frac{4Q^2}{T^2} R \cdot \frac{T}{3} = \frac{4Q^2R}{3T} $$
Step 4: Final Answer
The correct option is:
$$ \boxed{\frac{4Q^2R}{3T}} $$
The correct answer is option (A): \(\frac{4Q^2R}{3T}\)
Explanation:
The corresponding i–t graph is a straight line where current i decreases linearly from a peak value to zero in time t.
So, the current at time t is given by the equation of a straight line:
\(i = i - \left( \frac{i}{t} \right) t\)
which resembles the equation y = −mx + c.
Now, the average current is:
\(i_{\text{avg}} = \frac{2q}{t}\)
At any instant, the heat produced in a short time dt is:
\(dH = i^2 R \, dt\)
Substituting the value of i(t) into the expression for heat:
\(dH = \left( \frac{2q}{t} - \frac{2q t^2}{t^2} \right)^2 R \, dt\)
Now, total heat produced over time t is:
\(H = \int_{0}^{t} \left( \frac{2q}{t} - \frac{2q t}{t^2} \right)^2 R \, dt\)
On solving the integral, we get:
\(H = \frac{4q^2 R}{3t}\)
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where