Understanding the RMS (Root Mean Square) Value:
The root mean square (rms) value \( I_{\text{rms}} \) of a current \( i = I_0 + I_1 \sin(\omega t + \phi) \) is given by:
\[ I_{\text{rms}} = \sqrt{(I_0)^2 + \frac{(I_1)^2}{2}} \] where \( I_0 \) is the DC component and \( I_1 \) is the amplitude of the AC component.
Identify \( I_0 \) and \( I_1 \):
In this case:
\[ I_0 = 6 \, \text{A} \quad \text{and} \quad I_1 = \sqrt{56} \, \text{A} \]
Calculate the RMS Value:
Substitute \( I_0 = 6 \) and \( I_1 = \sqrt{56} \) into the rms formula:
\[ I_{\text{rms}} = \sqrt{(6)^2 + \frac{(\sqrt{56})^2}{2}} \] \[ = \sqrt{36 + \frac{56}{2}} \] \[ = \sqrt{36 + 28} \] \[ = \sqrt{64} = 8 \, \text{A} \]
Conclusion:
The rms value of the current is \( 8 \, \text{A} \).



Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 