Understanding the RMS (Root Mean Square) Value:
The root mean square (rms) value \( I_{\text{rms}} \) of a current \( i = I_0 + I_1 \sin(\omega t + \phi) \) is given by:
\[ I_{\text{rms}} = \sqrt{(I_0)^2 + \frac{(I_1)^2}{2}} \] where \( I_0 \) is the DC component and \( I_1 \) is the amplitude of the AC component.
Identify \( I_0 \) and \( I_1 \):
In this case:
\[ I_0 = 6 \, \text{A} \quad \text{and} \quad I_1 = \sqrt{56} \, \text{A} \]
Calculate the RMS Value:
Substitute \( I_0 = 6 \) and \( I_1 = \sqrt{56} \) into the rms formula:
\[ I_{\text{rms}} = \sqrt{(6)^2 + \frac{(\sqrt{56})^2}{2}} \] \[ = \sqrt{36 + \frac{56}{2}} \] \[ = \sqrt{36 + 28} \] \[ = \sqrt{64} = 8 \, \text{A} \]
Conclusion:
The rms value of the current is \( 8 \, \text{A} \).
Draw the plots showing the variation of magnetic flux φ linked with the loop with time t and variation of induced emf E with time t. Mark the relevant values of E, φ and t on the graphs.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: