Understanding the RMS (Root Mean Square) Value:
The root mean square (rms) value \( I_{\text{rms}} \) of a current \( i = I_0 + I_1 \sin(\omega t + \phi) \) is given by:
\[ I_{\text{rms}} = \sqrt{(I_0)^2 + \frac{(I_1)^2}{2}} \] where \( I_0 \) is the DC component and \( I_1 \) is the amplitude of the AC component.
Identify \( I_0 \) and \( I_1 \):
In this case:
\[ I_0 = 6 \, \text{A} \quad \text{and} \quad I_1 = \sqrt{56} \, \text{A} \]
Calculate the RMS Value:
Substitute \( I_0 = 6 \) and \( I_1 = \sqrt{56} \) into the rms formula:
\[ I_{\text{rms}} = \sqrt{(6)^2 + \frac{(\sqrt{56})^2}{2}} \] \[ = \sqrt{36 + \frac{56}{2}} \] \[ = \sqrt{36 + 28} \] \[ = \sqrt{64} = 8 \, \text{A} \]
Conclusion:
The rms value of the current is \( 8 \, \text{A} \).
Draw the plots showing the variation of magnetic flux φ linked with the loop with time t and variation of induced emf E with time t. Mark the relevant values of E, φ and t on the graphs.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).