Stokes’ Law relates the drag force to viscosity and terminal velocity
Step 1: Apply Stokes’ Law for terminal velocity.- For uniform velocity, net force = 0.- Buoyant force = 6πηrv.
$\frac{4}{3}\pi r^3 \rho g = 6 \pi \eta r v$.
Step 2: Solve for η.
$\eta = \frac{2r^2 \rho g}{9v}$ .- Given r = $\frac{6}{2} \times 10^{-3}$ = 3 × 10-3m, ρ = 1750 kg/m3, v = 0.35 × 10-2 m/s:
$\eta = \frac{2 \cdot (3 \times 10^{-3})^2 \cdot 1750 \cdot 10}{9 \cdot 0.35 \times 10^{-2}}$.
η = 10 Pas.
Final Answer: The coefficient of viscosity is 10 Pas
A horizontal force of 0.5 N is required to move a metal plate of area \( 10^{-2} \, {m}^2 \) with a velocity of \( 3 \times 10^{-2} \, {m/s} \), when it rests on \( 0.5 \times 10^{-3} \, {m} \) thick layer of glycerin. Find the viscosity of glycerin.