In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly:
For an application where the Reynolds number is to be kept constant, a liquid with a density of 1 g cm\(^-3\) and viscosity of 0.01 Poise results in a characteristic speed of 1 cm s\(^-1\). If this liquid is replaced by another with a density of 1.25 g cm\(^-3\) and viscosity of 0.015 Poise, the characteristic velocity will be ......... cm s\(^-1\) (rounded off to one decimal place).
Consider a fully developed, steady, one-dimensional, laminar flow of a Newtonian liquid through a pipe. The maximum velocity in the pipe is proportional to which of the following quantities?
Given: \( \Delta P \) is the difference between the outlet and inlet pressure, \( \mu \) is the dynamic viscosity of the liquid, and \( R \) and \( L \) are the radius and length of the pipe, respectively.
A horizontal force of 0.5 N is required to move a metal plate of area \( 10^{-2} \, {m}^2 \) with a velocity of \( 3 \times 10^{-2} \, {m/s} \), when it rests on \( 0.5 \times 10^{-3} \, {m} \) thick layer of glycerin. Find the viscosity of glycerin.
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is