Among the given statements below
(a) \( \neg p \vee (\neg p \vee q) \)
(b) \( \neg q \wedge (\neg p \vee \neg q) \)
(c) \( (\neg p \vee \neg q) \wedge (p \vee \neg q) \)
(d) \( (\neg p \vee \neg q) \vee (p \vee \neg q) \)
.............. is a tautology.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :